## EE 330 Lecture 12

Back-End Processing
Semiconductor Processes
Devices in Semiconductor Processes

- Resistors
- Diodes
- Capacitors
- MOSFET
- BJT

## Fall 2025 Exam Schedule

Exam 1 Friday Sept 26

## Capacitance in Interconnects



**Equivalent Circuit** 

## Resistance in Interconnects



H << W and H << L in most processes Interconnect behaves as a "thin" film Sheet resistance often used instead of conductivity to characterize film

$$R_{\Box} = \rho/H$$

$$R=R_{\square}[L/W]$$

#### **Review from Last Lecture**

SCMOS\_SUBM (lambda=0.30)

SCMOS (lambda=0.35)

0.10 0.00 0.00 0.20

M2

0.10

0.97

UNITS

ohms

ohms/sq

angstrom

FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS

Vth Poly >15.0 <-15.0 volts

PROCESS PARAMETERS P+ PLY2 HR POLY2 М1 N+ POLY 999 44.2 0.09 Sheet Resistance 83.5 105.3 23.5 Contact Resistance 64.9 149.7 17.3 29.2 Gate Oxide Thickness 142

 PROCESS PARAMETERS
 M3 N\PLY N\_W UNITS

 Sheet Resistance
 0.05 824 816 ohms/sq

 Contact Resistance
 0.79 ohms

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS N+ P+ POLY POLY2 М1 M2 МЗ ΝW UNITS Area (substrate) 425 731 84 27 12 7 37 aF/um^2 Area (N+active) 2434 35 16 11 aF/um^2 Area (P+active) 2335 aF/um^2 Area (poly) 938 56 15 9 aF/um^2 Area (poly2) 49 aF/um^2 Area (metal1) 31 13 aF/um^2 Area (metal2) 35 aF/um^2 Fringe (substrate) 33 23 aF/um 344 238 49 38 Fringe (poly) 59 28 aF/um Fringe (metal1) 51 34 aF/um Fringe (metal2) 52 aF/um 232 aF/um Overlap (N+active) Overlap (P+active) 312 aF/um

 CIRCUIT PARAMETERS
 UNITS

 Inverters
 K

 Vinv
 1.0
 2.02
 volts

 Vinv
 1.5
 2.28
 volts

 Vol (100 uA)
 2.0
 0.13
 volts

## **Back-End Process Flow**



#### **Probe Test**



Probes on section of probe card

#### **Review from Last Lecture**

#### **Probe Test**



Pad showing probe marks



Pad showing bonding wire



Die showing wire bonds to package cavity

#### **Review from Last Lecture**

#### **Probe Test**



Production probe test facility

Goal to Identify defective die on wafer



## Die Attach

- 1. Eutectic
- 2. Pre-form
- 3. Conductive Epoxy

#### **Review from Last Lecture**

# Wire Bonding



**Ball Bond** 



**Ball Bond Photograph** 

# **Bump Bonding**



## **Packaging**

- 1. Many variants in packages now available
- 2. Considerable development ongoing on developing packaging technology
- 3. Cost can vary from few cents to tens of dollars
- 4. Must minimize product loss after packaged
- 5. Choice of package for a product is serious business
- 6. Designer invariably needs to know packaging plans and package models

# Packaging



# Packaging





#### Pin Pitch Varies with Package Technology

All measurements are nominal in [mm].

| Name                   | Pin pitch | Size         | Height |
|------------------------|-----------|--------------|--------|
| DIP or DIL             | 2.54      |              |        |
| SOIC-16                | 1.27      | 3.9 x 10     | 1.72   |
| SSOP                   | 0.635     |              |        |
| TSSOP54-II             | 0.8       | 12.7 x 22.22 | ~1     |
| PLCC44                 | 1.27      |              |        |
| PQ208 <sup>[1]</sup>   | 0.50      | 28 x 28      | 3.4    |
| TQFP64                 | 0.40      | 7 x 7        | 1.0    |
| TQFP144 <sup>[2]</sup> | 0.50      | 20 x 20      | 1.0    |
| 128PQFP                | 0.50      | 23.23 x 14.0 | 3.15   |



http://www.electroiq.com/index/display/packaging-article-display/234467/articles/advanced-packaging/volume-14/issue-8/features/the-back-end-process/materials-and-methods-for-ic-package-assemblies.htm

#### From Wikipedia, Sept 20, 2010

#### Many standard packages available today:

http://www.interfacebus.com/Design Pack types.html

BCC: Bump Chip Carrier

BGA: Ball Grid Array; BGA graphic BOFP: Bumpered Quad Flat Pack

CABGA/SSBGA: Chip Array/Small Scale Ball Grid Array

CBGA: Ceramic Ball Grid Array

CFP: Ceramic Flat Pack

CPGA: Ceramic Pin Grid Array, CPGA Graphic CQFP: Ceramic Quad Flat Pack, CQFP Graphic

TBD: Ceramic Lead-Less Chip Carrier

DFN: Dual Flat Pack, No Lead

DLCC: Dual Lead-Less Chip Carrier (Ceramic)

ETQFP: Extra Thin Quad Flat Package FBGA: Fine-pitch Ball Grid Array fpBGA: Fine Pitch Ball Grid Array

HSBGA: Heat Slug Ball Grid Array

JLCC: J-Leaded Chip Carrier (Ceramic) J-Lead Picture

LBGA: Low-Profile Ball Grid Array
LCC: Leaded Chip Carrier LCC Graphic

LCC: Leaded Chip Carrier Un-formed LCC Graphic

LCCC: Leaded Ceramic Chip Carrier,

LFBGA: Low-Profile, Fine-Pitch Ball Grid Array

LGA: Land Grid Array, LGA uP [Pins are on the Motherboard, not the socket]

LLCC: Leadless Leaded Chip Carrier LLCC Graphic

LQFP: Low Profile Quad Flat Package

MCMBGA: Multi Chip Module Ball Grid Array

MCMCABGA: Multi Chip Module-Chip Array Ball Grid Array

MLCC: Micro Lead-frame Chip Carrier

PBGA: Plastic Ball Grid Array
PLCC: Plastic Leaded Chip Carrier
PQFD: Plastic Quad Flat Pack

PQFP: Plastic Quad Flat Pack

PSOP: Plastic Small-Outline Package PSOP graphic

QFP: Quad Flatpack QFP Graphics

QSOP: Quarter Size Outline Package [Quarter Pitch Small Outline Package]

SBGA: Super BGA - above 500 Pin count

SOIC: Small Outline IC

SO Flat Pack: Small Outline Flat Pack IC

SOJ: Small-Outline Package [J-Lead]; J-Lead Picture

SOP: Small-Outline Package; SOP IC, Socket

SSOP: Shrink Small-Outline Package

TBGA: Thin Ball Grid Array

TQFP: Thin Quad Flat Pack TQFP Graphic

TSOP: Thin Small-Outline Package

TSSOP: Thin Shrink Small-Outline Package TVSOP: Thin Very Small-Outline Package

VQFB: Very-thin Quad Flat Pack

# Considerable activity today and for years to come on improving packaging technology

- Multiple die in a package
- Three-dimensional chip stacking
- Multiple levels of interconnect in stacks
- Through silicon via technology
- Power and heat management
- Cost driven and cost constrained

#### The following few slides come from a John Lau presentation

(i) www.sematech.org/meetings/archives/symposia/10187/Session2/04\_Lau.pdf

#### **TSV Interposer: The Most Cost-Effective** Integrator for 3D IC Integration

John H. Lau **Electronics & Optoelectronics Research Laboratories Industrial Technology Research Institute (ITRI)** Chutung, Hsinchu, Taiwan 310, R.O.C. 886-3591-3390, johnlau@itri.org.tw









# TSV passive interposer supporting high-power chips (e.g., microprocessor and logic) on its top side and low-power chips (e.g., memory) on its bottom side



Special underfills are needed between the Cu -filled interposer and all the chips. Ordinary underfills are needed between the interposer and the organic substrate.

ASME InterPACK2011-52189 (Lau)

## **Back-End Process Flow**



## **Testing of Integrated Circuits**

Bench testing used to qualify parts for production

Most integrated circuits are tested twice during production

#### Wafer Probe Testing

- Quick test for functionality
- Usually does not include much parametric testing
- Relatively fast and low cost test
- Package costs often quite large
- Critical to avoid packaging defective parts

#### Packaged Part Testing

- Testing costs for packaged parts can be high
- Extensive parametric tests done at package level for many parts
- Data sheet parametrics with Max and Min values are usually tested on all Ics
- Data sheet parametrics with Typ values are seldom tested
- Occasionally require testing at two or more temperatures but this is costly
- Critical to avoid packaging defective parts

#### **Bench Test Environment**





#### **Bench Test Environment**



## **Final Test**

Typical ATE System (less handler)

**Work Station** 



Main Frame

<u>Automated Test Equipment (ATE)</u>

**Test Head** 

# Device Interface Board - DIB (Load Board)



## Octal Site DIB

Flex Octal (Teradyne)





DOLLOIT



## **Final Test**



Patent Number: US 6,218,852 B1, Additional Patents Pending Atlas (SSI Robotics)

## Basic Semiconductor Processes

#### MOS (Metal Oxide Semiconductor)

1. NMOS n-ch

2. PMOS p-ch

3. CMOS n-ch & p-ch

Basic Device: MOSFET

Niche Device: MESFET

Other Devices: Diode

BJT (Bipolar Junction Transistor)

JFET (Junction Field Effect Transistor)

Resistors Capacitors

Schottky Diode

## **Basic Semiconductor Processes**

#### Bipolar

- 1.  $T^2L$
- 2. ECL
- 3.  $I^2L$
- 4. Linear lcs

Basic Device: BJT (Bipolar Junction Transistor)

Niche Devices: HBT (Heterojunction Bipolar Transistor)

Other Devices: Diode

Resistor Capacitor

Schottky Diode

JFET (Junction Field Effect Transistor)

### **Basic Semiconductor Processes**

#### Other Processes

- Thin and Thick Film Processes
  - Basic Device: Resistor
- BiMOS or BiCMOS
  - Combines both MOS & Bipolar Processes
  - Basic Devices: MOSFET & BJT
- SiGe
  - BJT with HBT implementation
- SiGe / MOS
  - Combines HBT & MOSFET technology
- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
- Twin-Well & Twin Tub CMOS
  - Very similar to basic CMOS but more optimal transistor char.

### **Basic Devices**

Standard CMOS Process **MOS Transistors** n-channel p-channel **Capacitors Primary Consideration** Resistors Diodes in This Course BJT (decent in some processes) npn pnp JFET (in some processes) n-channel p-channel **Standard Bipolar Process BJT** npn Some Consideration in pnp **JFET This Course** n-channel p-channel (devices are available in some CMOS processes) Diodes Resistors Capacitors **Niche Devices** Photodetectors (photodiodes, phototransistors, photoresistors) MESFET **HBT** Schottky Diode (not Shockley) **MEM Devices** Some Consideration in TRIAC/SCR **This Course** 

### Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT
- JFET
- MESFET

### Basic Devices and Device Models



- Diode
- Capacitor
- MOSFET
- BJT

Resistors were discussed when considering interconnects so will only be briefly reviewed here

### Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
  - Diffused resistors
  - Poly Resistors
  - Metal Resistors
  - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
  - Ambient temperature
  - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming resistors is possible
  - Laser, links, switches

Have already modeled resistance as an interconnect Modeling is the same as for a resistor so will briefly review

### **Resistor Model**



### Model:

$$R = \frac{V}{I}$$

## Resistivity

Volumetric measure of conduction capability of a material



$$\rho = \frac{AR}{L}$$

for homogeneous material,  $\rho \perp A$ , R, L

### **Sheet Resistance**



$$R_{\square} = \frac{RW}{L}$$
 (for d << w, d << L) units: ohms /  $\square$ 

for homogeneous materials, R<sub>\pi</sub> is independent of W, L, R

### Relationship between $\rho$ and $R_{\mathbb{P}}$

$$R_{\square} = \frac{RW}{L}$$

$$\rho = \frac{AR}{L}$$

$$\rho = \frac{A}{W}R_{\square}$$

$$A = W \times d$$

$$\rho = \frac{A}{W}R_{\square} = \frac{W d}{W}R_{\square} = d \times R_{\square}$$

Number of squares, N<sub>s</sub>, often used instead of L / W in determining resistance of film resistors







R = ?



$$R = ?$$

$$N_{S} = 8.4$$

$$R = R_{\Box}(8.4)$$

### Corners in Film Resistors



Rule of Thumb: .55 squares for each corner

Determine R if  $R_{\Box} = 100 \Omega / \Box$ 





$$N_S$$
=17.1  
 $R = (17.1) R_{\Box}$   
 $R = 1710 \Omega$ 

### Resistivity of Materials used in Semiconductor Processing

• Cu:  $1.7E-6 \Omega cm$ 

• Al:  $2.7E-6 \Omega cm$ 

• Gold:  $2.4E-6 \Omega cm$ 

• Platinum:  $1.1E-5 \Omega cm$ 

• Polysilicon: 1E-2 to 1E4  $\Omega$ cm\*

• n-Si: typically .25 to 5  $\Omega$ cm\* (but larger range possible)

• intrinsic Si:  $2.5E5 \Omega cm$ 

•  $SiO_2$ : E14  $\Omega$ cm

<sup>\*</sup> But fixed in a given process

#### http://www.cleanroom.byu.edu/ResistivityCal.phtml

#### Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

| Dopant:                 | Arsenic     Boron     Phosphorus |                        |
|-------------------------|----------------------------------|------------------------|
| Impurity Concentration: | 1e15 (cm <sup>-3</sup> )         |                        |
|                         | Calculate Export to CSV          |                        |
| Mobility:               | 1358.6941377290254               | [cm <sup>2</sup> /V-s] |
| Resistivity:            | 4.593746148183427                | [Ω-cm]                 |
|                         |                                  |                        |

Calculations are for a silicon substrate.



#### http://www.cleanroom.byu.edu/ResistivityCal.phtml

#### Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

| Dopant:                 | <ul><li>Arsenic</li><li>Boron</li><li>Phosphorus</li></ul>  |
|-------------------------|-------------------------------------------------------------|
| Impurity Concentration: | 1e15 (cm <sup>-3</sup> )                                    |
|                         | Calculate Export to CSV                                     |
| Mobility:               | 461.9540345952693 [cm <sup>2</sup> /V-s                     |
| Resistivity:            | $[\Omega\text{-cm}] \label{eq:omega_cm} [\Omega\text{-cm}]$ |
|                         |                                                             |

Calculations are for a silicon substrate.



#### http://www.cleanroom.byu.edu/ResistivityCal.phtml

#### Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

| Dopant:                 | <ul><li>Arsenic</li><li>Boron</li><li>Phosphorus</li></ul> |                        |
|-------------------------|------------------------------------------------------------|------------------------|
| Impurity Concentration: | 1e15 (cm <sup>-3</sup> )                                   |                        |
|                         | Calculate Export to CSV                                    |                        |
| Mobility:               | 1362.0563795030084                                         | [cm <sup>2</sup> /V-s] |
| Resistivity:            | 4.582406466925789                                          | [Ω-cm]                 |
|                         |                                                            |                        |

Calculations are for a silicon substrate.



### Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors For a resistor:

$$TCR = \left(\frac{1}{R} \frac{dR}{dT}\right)_{\text{op. temp}} \bullet 10^6 \text{ ppm/}^{\circ}\text{C}$$

This differential eqn can easily be solved if TCR is a constant

$$R(T_2) = R(T_1)e^{\frac{T_2 - T_1}{10^6}TCR}$$
 If x is small,  $e^x \cong 1 + x$ 

It follows that If  $TCR*(T_2-T_1)$  is small,

$$R(T_2) \approx R(T_1) \left[ 1 + (T_2 - T_1) \frac{TCR}{10^6} \right]$$

**Identical Expressions for Capacitors** 

## **Voltage Coefficients**

Used for indicating voltage sensitivity of resistors & capacitors

#### For a resistor:

$$VCR = \left(\frac{1}{R} \frac{dR}{dV}\right) \Big|_{ref \ voltage} \bullet 10^6 \ ppm/V$$

This diff eqn can easily be solved if VCR is a constant

$$\mathbf{R}(\mathbf{V_2}) = \mathbf{R}(\mathbf{V_1}) e^{\frac{\mathbf{V_2} - \mathbf{V_1}}{10^6} \mathbf{VCR}}$$

It follows that If  $VCR*(V_2-V_1)$  is small,

$$R(V_2) \approx R(V_1) \left[ 1 + (V_2 - V_1) \frac{VCR}{10^6} \right]$$

**Identical Expressions for Capacitors** 

### Temperature and Voltage Coefficients

- Temperature and voltage coefficients often quite large for diffused resistors
- Temperature and voltage coefficients often quite small for poly and metal film (e.g. SiCr) resistors

VV

| Type<br>of layer | Sheet<br>Resistance<br>Ω/□ | Accuracy<br>(absolute)<br>% | Temperature<br>Coefficient<br>ppm/°C | Voltage<br>Coefficient<br>ppm/V |
|------------------|----------------------------|-----------------------------|--------------------------------------|---------------------------------|
| n + diff         | 30 - 50                    | 20 - 40                     | 200 - 1K                             | 50 - 300                        |
| p + diff         | 50 -150                    | 20 - 40                     | 200 - 1K                             | 50 - 300                        |
| n - well         | 2K - 4K                    | 15 - 30                     | 5K                                   | 10K                             |
| p - well         | 3K - 6K                    | 15 - 30                     | 5K                                   | 10K                             |
| pinched n - well | 6K - 10K                   | 25 - 40                     | 10K                                  | 20K                             |
| pinched p - well | 9K - 13K                   | 25 - 40                     | 10K                                  | 20K                             |
| first poly       | 20 - 40                    | 25 - 40                     | 500 - 1500                           | 20 - 200                        |
| second poly      | 15 - 40                    | 25 - 40                     | 500 - 1500                           | 20 - 200                        |

(relative accuracy much better and can be controlled by designer)

#### **MOS Passive RC Component Typical Performance Summary**

| Component Type         | Range of Values                               | Absolute<br>Accuracy | Relative<br>Accuracy | Temperature<br>Coefficient | Voltage<br>Coefficient |
|------------------------|-----------------------------------------------|----------------------|----------------------|----------------------------|------------------------|
| MOSFET gate Cap.       | 6-7 fF/μm <sup>2</sup>                        | 10%                  | 0.1%                 | 20ppm/°C                   | ±20ppm/V               |
| Poly-Poly Capacitor    | $0.3 \text{-} 0.4 \text{ fF/} \mu \text{m}^2$ | 20%                  | 0.1%                 | 25ppm/°C                   | $\pm 50 ppm/V$         |
| Metal-Metal Capacitor  | $0.1$ -1fF/ $\mu$ m <sup>2</sup>              | 10%                  | 0.6%                 | -40ppm/°C                  | ±1ppm/V                |
| Diffused Resistor      | 10-100 Ω/sq.                                  | 35%                  | 2%                   | 1500ppm/°C                 | 200ppm/V               |
| Ion Implanted Resistor | 0.5-2 kΩ/sq.                                  | 15%                  | 2%                   | 400ppm/°C                  | 800ppm/V               |
| Poly Resistor          | 30-200 Ω/sq.                                  | 30%                  | 2%                   | 1500ppm/°C                 | 100ppm/V               |
| n-well Resistor        | 1-10 kΩ/sq.                                   | 40%                  | 5%                   | 8000ppm/°C                 | 10kppm/V               |
| Top Metal Resistor     | 30 mΩ/sq.                                     | 15%                  | 2%                   | 4000ppm/°C                 | -                      |
| Lower Metal Resistor   | 70 mΩ/sq.                                     | 28%                  | 3%                   | 4000ppm/°C                 | -                      |

Table 2.4-1 Approximate Performance Summary of Passive Components in a 0.18  $\mu m$  CMOS Process

| Component Type                                     | Typical Value                   | Typical Matching<br>Accuracy | Temperature<br>Coefficient | Voltage<br>Coefficient |
|----------------------------------------------------|---------------------------------|------------------------------|----------------------------|------------------------|
| MiM capacitor                                      | $1.0 \text{ fF/}\mu\text{m}^2$  | 0.03%                        | 50 ppm/°C                  | 50 ppm/V               |
| MOM capacitor                                      | $0.17 \text{ fF/}\mu\text{m}^2$ | 1%                           | 50 ppm/°C                  | 50 ppm/V               |
| P <sup>+</sup> Diffused resistor<br>(nonsilicide)  | 80–150 Ω/□                      | 0.4%                         | 1500 ppm/°C                | 200 ppm/V              |
| N <sup>+</sup> Diffused resistor<br>(non-silicide) | 50–80 Ω/□                       | 0.4%                         | 1500 ppm/°C                | 200 ppm/V              |
| N <sup>+</sup> Poly resistor<br>(non-silicide)     | 300 Ω/□                         | 2%                           | -2000 ppm/°C               | 100 ppm/V              |
| P <sup>+</sup> Poly resistor                       |                                 |                              |                            |                        |
| (non-silicide)                                     | 300 Ω/□                         | 0.5%                         | −500 ppm/°C                | 100 ppm/V              |
| P Poly resistor                                    |                                 |                              |                            |                        |
| (non-silicide)                                     | 1000 Ω/□                        | 0.5%                         | -1000 ppm/°C               | 100 ppm/V              |
| n-well resistor                                    | 1–2 kΩ/□                        |                              | 8000 ppm/°C                | 10k ppm/V              |

#### MOS Passive RC Component Performance Summary

| Component Type                          | Range of Values                | Absolute<br>Accuracy | Relative<br>Accuracy | Temperature<br>Coefficient | Voltage<br>Coefficient |
|-----------------------------------------|--------------------------------|----------------------|----------------------|----------------------------|------------------------|
| Poly-oxide-semi-<br>conductor Capacitor | 0.35-0.5<br>fF/μm <sup>2</sup> | 10%                  | 0.1%                 | 20ppm/°C                   | ±20ppm/V               |
| Poly-Poly Capacitor                     | 0.3-0.4<br>fF/μm <sup>2</sup>  | 20%                  | 0.1%                 | 25ppm/°C                   | ±50ppm/V               |
| Diffused Resistor                       | 10-100<br>Ω/sq.                | 35%                  | 2%                   | 1500ppm/°C                 | 200ppm/V               |
| Ion Implanted<br>Resistor               | 0.5-2<br>kΩ/sq.                | 15%                  | 2%                   | 400ppm/°C                  | 800ppm/V               |
| Poly Resistor                           | 30-200<br>Ω/sq.                | 30%                  | 2%                   | 1500ppm/°C                 | 100ppm/V               |
| n-well Resistor                         | 1-10 kΩ/sq.                    | 40%                  | 5%                   | 8000ppm/°C                 | 10kppm/V               |

| Layer        | R/□ [Ω/□] | T <sub>C</sub> [ppm/°C]<br>@ T = 25 °C | V <sub>c</sub> [ppm/V] | B <sub>c</sub> [ppm/V] |
|--------------|-----------|----------------------------------------|------------------------|------------------------|
| N+ poly      | 100       | -800                                   | 50                     | 50                     |
| P+ poly      | 180       | 200                                    | 50                     | 50                     |
| N+ diffusion | 50        | 1500                                   | 500                    | -500                   |
| P+ diffusion | 100       | 1600                                   | 500                    | -500                   |
| N-well       | 1000      | -1500                                  | 20,000                 | 30,000                 |

**Lingkai Kong** 

**EECS240** 

# How does TCR of Integrated Resistors Compare with Low-Cost Discrete Resistors?

Metal film resistors are available with tolerances of 0.1, 0.25, 0.5, 1 and 2%. The temperature coefficient of resistance (TCR) is usually between 50 and 100 ppm/°C.



Integrated resistors typically have a much larger TCR but there are some special processes that provide resistors with excellent thermal stability (\$\$\$) Example: Determine the percent change in resistance of a 5K Polysilicon resistor as the temperature increases from 30°C to 60°C if the TCR is constant and equal to 1500 ppm/°C

$$R(T_{2}) \cong R(T_{1}) \left[ 1 + (T_{2} - T_{1}) \frac{TCR}{10^{6}} \right]$$

$$R(T_{2}) \cong R(T_{1}) \left[ 1 + (30^{\circ}C) \frac{1500}{10^{6}} \right]$$

$$R(T_{2}) \cong R(T_{1}) [1 + .045]$$

$$R(T_2) \cong R(T_1)[1.045]$$

Thus the resistor increases by 4.5%

Did not need R(T<sub>1</sub>) to answer this question!

What is  $R(T_1)$  as stated in this example ? 5K? It is around 5K but if we want to be specific, would need to specify T



Stay Safe and Stay Healthy!

### End of Lecture 12